419 research outputs found

    Effect of Annealing Environment on the Performance of Sol-Gel-Processed ZrO2 RRAM

    Get PDF
    We investigate the annealing environment effect on ZrO2-based resistive random-access memory (RRAM) devices. Fabricated devices exhibited conventional bipolar-switching memory properties. In particular, the vacuum-annealed ZrO2 films exhibited larger crystallinity and grain size, denser film, and a relatively small quantity of oxygen vacancies compared with the films annealed in air and N2. These led to a decrease in the leakage current and an increase in the resistance ratio of the high-resistance state (HRS)/low-resistance state (LRS) and successfully improved non-volatile memory properties, such as endurance and retention characteristics. The HRS and LRS values were found to last for 104 s without any significant degradation. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.1

    Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Get PDF
    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.1152sciescopu

    Sol-gel Processed Yttrium-doped SnO2 Thin Film Transistors

    Get PDF
    Y-doped SnO2 thin film transistors were successfully fabricated by means of sol-gel process. The effect of Y concentration on the structural, chemical, and electrical properties of sol-gel-processed SnO2 films was investigated via GIXRD, SPM, and XPS; the corresponding electrical transport properties of the film were also evaluated. The dopant, Y, can successfully control the free carrier concentration by suppressing the formation of oxygen vacancy inside SnO2 semiconductors due to its lower electronegativity and SEP. With an increase of Ywt%, it was observed that the crystallinity and oxygen vacancy concentration decreased, and the operation mode of SnO2 thin film transistor changed from accumulation (normally on) to enhancement mode (normally off) with a positive Vth shift. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.1

    Rapid and Sensitive Detection of Lung Cancer Biomarker Using Nanoporous Biosensor Based on Localized Surface Plasmon Resonance Coupled with Interferometry

    Get PDF
    We propose a nanobiosensor to evaluate a lung cancer-specific biomarker. The nanobiosensor is based on an anodic aluminum oxide (AAO) chip and functions on the principles of localized surface plasmon resonance (LSPR) and interferometry. The pore-depth of the fabricated nanoporous AAO chip was 1 µm and was obtained using a two-step electrochemical anodization process. The sensor chip is sensitive to the refractive index (RI) changes of the surrounding medium and also provides simple and label-free detection when specific antibodies are immobilized on the gold-deposited surface of the AAO chip. In order to confirm the effectiveness of the sensor, the antibodies were immobilized on the surface of the AAO chip, and the lung cancer-specific biomarker was applied atop of the immobilized-antibody layer using the self-assembled monolayer method. The nanoporous AAO chip was used as a sensor system to detect serum amyloid A1, which is a lung cancer-specific biomarker. The specific reaction of the antigen-antibody contributes to the change in the RI. This in turn causes a shift in the resonance spectrum in the refractive interference pattern. The limit of detection (LOD) was found to be 100 ag/mL and the biosensor had high sensitivity over a wide concentration range

    Constrictive Pericarditis Accompanied by Swine-Origin Influenza A (H1N1) Infection

    Get PDF
    Swine-origin influenza A (H1N1) is caused by a new strain of the influenza virus. The disease has spread rapidly and was declared a pandemic in April, 2009. So far, however, there is a scarcity of information regarding the complications of swine influenza. A report of the disease in the winter of 2009 in the Southern Hemisphere found that the most common manifestations of influenza A virus infection are upper respiratory tract infection and pneumonia. Although there may be an association between fulminant myocarditis and Swine influenza, cardiovascular complications resulting from swine Influenza A infection are exceedingly rare. We report a case of acute constrictive pericarditis in a healthy subject infected by the swine-origin influenza A (H1N1) virus

    Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging

    Get PDF
    Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.David H. Koch Institute for Integrative Cancer Research at MIT (Bridge Initiative

    Direct Synthesis of Molybdenum Phosphide Nanorods on Silicon Using Graphene at the Heterointerface for Efficient Photoelectrochemical Water Reduction

    Get PDF
    MoP nanorod-array catalysts were directly synthesized on graphene passivated silicon photocathodes without secondary phase. Mo-O-C covalent bondings and energy band bending at heterointerfaces facilitate the electron transfer to the reaction sites. Numerous catalytic sites and drastically enhanced anti-reflectance of MoP nanorods contribute to the high solar energy conversion efficiency. Abstract Transition metal phosphides (TMPs) and transition metal dichalcogenides (TMDs) have been widely investigated as photoelectrochemical (PEC) catalysts for hydrogen evolution reaction (HER). Using high-temperature processes to get crystallized compounds with large-area uniformity, it is still challenging to directly synthesize these catalysts on silicon photocathodes due to chemical incompatibility at the heterointerface. Here, a graphene interlayer is applied between p-Si and MoP nanorods to enable fully engineered interfaces without forming a metallic secondary compound that absorbs a parasitic light and provides an inefficient electron path for hydrogen evolution. Furthermore, the graphene facilitates the photogenerated electrons to rapidly transfer by creating Mo-O-C covalent bondings and energetically favorable band bending. With a bridging role of graphene, numerous active sites and anti-reflectance of MoP nanorods lead to significantly improved PEC-HER performance with a high photocurrent density of 21.8 mA cm−2 at 0 V versus RHE and high stability. Besides, low dependence on pH and temperature is observed with MoP nanorods incorporated photocathodes, which is desirable for practical use as a part of PEC cells. These results indicate that the direct synthesis of TMPs and TMDs enabled by graphene interlayer is a new promising way to fabricate Si-based photocathodes with high-quality interfaces and superior HER performance. Graphic Abstrac

    Efficacy of two different self-expanding nitinol stents for atherosclerotic femoropopliteal arterial disease (SENS-FP trial): study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: There have been few randomized control trials comparing the incidence of stent fracture and primary patency among different self-expanding nitinol stents to date. The SMART™ CONTROL stent (Cordis Corp, Miami Lakes, Florida, United States) has a peak-to-valley bridge and inline interconnection, whereas the COMPLETE™-SE stent (Medtronic Vascular, Santa Rosa, California, United States) crowns have been configured to minimize crown-to-crown interaction, increasing the stent's flexibility without compromising radial strength. Further, the 2011 ESC (European society of cardiology) guidelines recommend that dual antiplatelet therapy with aspirin and a thienopyridine such as clopidogrel should be administered for at least one month after infrainguinal bare metal stent implantation. Cilostazol has been reported to reduce intimal hyperplasia and subsequent repeat revascularization. To date, there has been no randomized study comparing the safety and efficacy of two different antiplatelet regimens, clopidogrel and cilostazol, following successful femoropopliteal stenting. METHODS/DESIGN: The primary purpose of our study is to examine the incidence of stent fracture and primary patency between two different major representative self-expanding nitinol stents (SMART™ CONTROL versus COMPLETE™-SE) in stenotic or occlusive femoropopliteal arterial lesion. The secondary purpose is to examine whether there is any difference in efficacy and safety between aspirin plus clopidogrel versus aspirin plus cilostazol for one month following stent implantation in femoropopliteal lesions. This is a prospective, randomized, multicenter trial to assess the efficacy of the COMPLETE™-SE versus SMART™ CONTROL stent for provisional stenting after balloon angioplasty in femoropopliteal arterial lesions. The study design is a 2x2 randomization design and a total of 346 patients will be enrolled. The primary endpoint of this study is the rate of binary restenosis in the treated segment at 12 months after intervention as determined by catheter angiography or duplex ultrasound. DISCUSSION: This trial will provide powerful insight into whether the design of the COMPLETE™-SE stent is more fracture-resistant or effective in preventing restenosis compared with the SMART™ CONTROL stent. Also, it will determine the efficacy and safety of aspirin plus clopidogrel versus aspirin plus cilostazol in patients undergoing stent implantation in femoropopliteal lesions. TRIAL REGISTRATION: Registered on 2 April 2012 with the National Institutes of Health Clinical Trials Registry (ClinicalTrials.gov identifier# NCT01570803)

    Independent effect of body mass index variation on amyloid-β positivity

    Get PDF
    ObjectivesThe relationship of body mass index (BMI) changes and variability with amyloid-β (Aβ) deposition remained unclear, although there were growing evidence that BMI is associated with the risk of developing cognitive impairment or AD dementia. To determine whether BMI changes and BMI variability affected Aβ positivity, we investigated the association of BMI changes and BMI variability with Aβ positivity, as assessed by PET in a non-demented population.MethodsWe retrospectively recruited 1,035 non-demented participants ≥50 years of age who underwent Aβ PET and had at least three BMI measurements in the memory clinic at Samsung Medical Center. To investigate the association between BMI change and variability with Aβ deposition, we performed multivariable logistic regression. Further distinctive underlying features of BMI subgroups were examined by employing a cluster analysis model.ResultsDecreased (odds ratio [OR] = 1.68, 95% confidence interval [CI] 1.16–2.42) or increased BMI (OR = 1.60, 95% CI 1.11–2.32) was associated with a greater risk of Aβ positivity after controlling for age, sex, APOE e4 genotype, years of education, hypertension, diabetes, baseline BMI, and BMI variability. A greater BMI variability (OR = 1.73, 95% CI 1.07–2.80) was associated with a greater risk of Aβ positivity after controlling for age, sex, APOE e4 genotype, years of education, hypertension, diabetes, baseline BMI, and BMI change. We also identified BMI subgroups showing a greater risk of Aβ positivity.ConclusionOur findings suggest that participants with BMI change, especially those with greater BMI variability, are more vulnerable to Aβ deposition regardless of baseline BMI. Furthermore, our results may contribute to the design of strategies to prevent Aβ deposition with respect to weight control
    corecore